Optimal Hamiltonian Completions and Path Covers for Trees, and a Reduction to Maximum Flow

نویسندگان

  • D. S. FRANZBLAU
  • A. RAYCHAUDHURI
چکیده

A minimum Hamiltonian completion of a graph G is a minimum-size set of edges that, when added to G, guarantee a Hamiltonian path. Finding a Hamiltonian completion has applications to frequency assignment as well as distributed computing. If the new edges are deleted from the Hamiltonian path, one is left with a minimum path cover, a minimum-size set of vertex-disjoint paths that cover the vertices of G. For arbitrary graphs, constructing a minimum Hamiltonian completion or path cover is clearly NP-hard, but there exists a lineartime algorithm for trees. In this paper we first give a description and proof of correctness for this linear-time algorithm that is simpler and more intuitive than those given previously. We show that the algorithm extends also to unicyclic graphs. We then give a new method for finding an optimal path cover or Hamiltonian completion for a tree that uses a reduction to a maximum flow problem. In addition, we show how to extend the reduction to construct, if possible, a covering of the vertices of a bipartite graph with vertex-disjoint cycles, that is, a 2-factor. 1. Definitions and results A Hamiltonian completion of a finite graph G = .V ; E/ is a set of edges that, when added to E , ensure that G has a Hamiltonian path. The Hamiltonian completion number hc.G/ is the minimum number of edges required in a Hamiltonian completion for G. A Hamiltonian completion with the minimum number of edges is a minimum or optimal Hamiltonian completion. A closely related concept is that of a path cover for a graph G, which is a set of vertex-disjoint simple paths that together contain all the vertices of G. The path cover number pc.G/ is the minimum number of paths in 1Department of Mathematics, CUNY, College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA; e-mail: [email protected]. 2Department of Mathematics, CUNY, College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA; e-mail: [email protected]. c © Australian Mathematical Society 2002, Serial-fee code 1446-8735/02 3See [3] or [4] for graph terms not defined here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control Pressure for Leakage Minimization in Water Distribution Systems Using Imperialist Competitive Algorithm

One of the key factors affecting leakage in water distribution systems is network pressure management by putting Pressure Reduce Valves (PRV) in the flow path and optimal regulation of these vales in water networks. This study aimed at investigating optimal pressure management problems so as to minimize leakage in water distribution networks. To do so, an approach was proposed for both optimal ...

متن کامل

Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability

In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...

متن کامل

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

Decomposing 4-connected planar triangulations into two trees and one path

Refining a classical proof of Whitney, we show that any 4-connected planar triangulation can be decomposed into a Hamiltonian path and two trees. Therefore, every 4-connected planar graph decomposes into three forests, one having maximum degree at most 2. We use this result to show that any Hamiltonian planar triangulation can be decomposed into two trees and one spanning tree of maximum degree...

متن کامل

Near-Minimum-Time Motion Planning of Manipulators along Specified Path

The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002